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The misalignment of a gear coupling in a multirotor system is an important problem; it
can cause various faults. In the present work the non-linear coupled lateral torsional
vibration model of rotor-bearing-gear coupling system is developed based on the
engagement conditions of gear couplings. Theoretical analysis shows that the forces and
moments acting on gear couplings due to the initial misalignment are from the inertia forces
of the sleeve and the internal damping between the meshing teeth, and depend on the
misalignment, internal damping, the rotating speed, and the structural parameters of the
gear coupling. Numerical analysis of the signature of vibration reveals that the even-integer
multiples of the rotating speed of lateral vibration and the odd-integer multiples of the
torsional vibration occur in the misaligned system, and the integer multiples of vibration are
apparent around the gear coupling. ( 2001 Academic Press
1. INTRODUCTION

In rotating machinery misalignment of rotors is an important reason that leads to vibration
problems. It is measured that about 60 per cent of faults was caused by misalignment.
Under the misaligned condition, the vibrations can induce wear of bearings, bending
deformation of shafts and so on, and threaten the stability of the system also. For a real
system there are many cases to cause misalignment, for example the deformation of rotors,
centers of bearings not located on the same line, errors of manufacture and installation.

Gear couplings can transmit high torque loads while accommodating misalignment
between two rotors. As a part of a multirotor system, gear couplings are widely used in
high-speed rotating machinery such as centrifugal compressors in large chemical processes.
In the rotor system with a gear coupling misalignment is a common fault form. Dewell and
Mitchell [1] considered the lateral vibration frequencies for a misaligned gear coupling; the
resulting frequencies are 2, 4, 6, 8,2 integer multiple components of the rotating speed,
which is the judgement criterion of engineers that the coupling is under misalignment.
However, the vibration of integer multiple components is not the only fault caused by the
coupling misalignment, other faults such as transverse crack of a rotor and the rubbing
22-460X/01/220283#18 $35.00/0 ( 2001 Academic Press
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motion between rotor and stator also induce the vibration. Hence, more information on the
fault diagnosis is required. In this paper, we are mainly concerned with the dynamic
signature analysis of the multirotors associated with the e!ects of misaligned gear coupling.
The excessive vibration of gear coupling in a boiler feed pump driven by a steam turbine
was previously observed by Gibbons [2], who developed the misalignment forces on the
coupling. However, he did not discuss the vibration signature of the system by the
misalignment fault, which is very important in a fault diagnosis analysis. In the past
discussions on gear coupling, the frictional forces between the teeth of couplings and its
e!ects on the stability of the rotor systems were the mainly concern. Marmol et al. [3]
developed a mathematical model to predict the lateral vibration of a rotor system connected
with spline coupling; however, in their model some major assumptions were made, one of
them was that all teeth of the coupling carry about the same load, which means that the
coupling is in &&perfect alignment''. Nawate and Terauchi [4] analyzed the number of teeth
in contact with the gear coupling considering the teeth errors; after calculating we found
that there are few teeth in contact in some cases. Yamauchi and Someya [5] discussed the
self-excitation vibration in the lateral direction for a crowned tooth gear coupling. Caliststit
[6] measured the friction coe$cients between the high-speed gear coupling teeth under
several conditions. Kramer [7] discussed the bending moments on the coupling, and
derived a simple equation. Bachschmid et al. [8] analyzed the behavior of the gear coupling
between the turbine and the compressor by means of an FEM. In their dynamic model the
gear coupling was simulated by a very thin beam element, so they did not consider the
relative motion between the hub and the sleeve of the coupling. Kanemitsu [9] discussed the
characteristics of torsional vibration about the gear coupling. Ku et al. [10] set up a test rig
to determine the angular sti!ness and equivalent viscous damping coe$cients of an axial
spline coupling. Regarding the vibration problems of a multirotor system connected by
a coupling, Xu and Maranfoni [11] developed a theoretical model of a motor-#exible
coupling-rotor system recently; the universal joint e!ects were included in the model to take
the misalignment e!ects into account.

In this paper, the non-linear dynamic model for a rotor-bearing-gear coupling system is
developed based on the engagement conditions of gear coupling, and the phenomena of
lateral}torsional vibration of the system under the improper aligning are presented.

2. CONSTRAINT EQUATION FOR A GEAR COUPLING

Figure 1 shows an involute tooth pro"le and the engagement relations between the hub
and the sleeve of a gear coupling. O
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i
f
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is the moving co-ordinate system, "xed with the

sleeve. Omgf is the rotating co-ordinate system, f-axis coincides with the axis of the rotor in
a static equilibrium state. The co-ordinate transformations of the two systems may be
expressed as
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Figure 1. Engagement relations of gear coupling.
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In the moving co-ordinate system, the equations of a point P on the surface of the
involute tooth pro"le can be expressed as
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Substituting equation (3) into equation (1), it becomes
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In Omgf system the vectors of normal line and velocity of the point P are as follows:
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The vectors of the engagement point P@ on the hub tooth surface then can be also
expressed as

n
e
"Mr

b
c
e
sin(h

e
#c

e
#c) !r

b
c
e
cos(h

e
#c

e
#c) 0N, (7)

V
p{
"MmQ

p{
gR
p{

fQ
p{
N, (8)

where

mQ
p{
"r

b
[!(hQ

e
#cR ) sin(h

e
#c

e
#c)#c

e
cos(h

e
#c

e
#c) (cR

e
#hQ

e
#c5 )]#mQ

je
,

gR
p{
"r

b
[(hQ

e
#cR ) cos(h

e
#c

e
#c)#c

e
sin(h

e
#c

e
#c)(cR

e
#hQ

e
#c5 )]#gR

je
,

fQ
p{
"0.



286 M. LI AND L. YU
Based on the conjugate engagement theorem of gear coupling, if P and P@ are conjugate
points, two basic conditions are necessary, which include that the normal lines of two points
are parallel, and the relative velocity of two points is perpendicular to the vector of the
normal lines. The latter is called engagement equation on the conjugate engagement
theorem; thus, they can be expressed as
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Substituting equations (6) and (8) into the second condition (V
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Using equation (11), equation (12) then becomes
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Since the radii of base circles of the hub and the sleeve are equal, the tangent line of the
two base circles (or engagement line) should be parallel to the line of centers of the base
circles as shown in Figure 1, we can obtain
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where b is the angle between the line of centers and m direction. Substituting equation (15)
into equation (13), it can be expressed as
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Integrating the above equation, "nally we can obtain
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Equation (18) is a constraint condition that should be satis"ed in normal meshing
between the lateral displacements in the centers and torsional angles of the hub and the
sleeve of gear couplings, and the constraint is holonomic on analytical mechanics.
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Figure 2(a) shows a rotor-gear coupling system that may be separated by n-station,
n-section breakup. There are "ve d.o.f. per station (m, g, d, e, h shown in Figure 2(b),
neglecting the displacement in the z direction). Oxyz is the "xed co-ordinate system, where
x- and y-axis are vertical and horizontal directions respectively. For the rotor stations the
vibration equations can be derived by the lumped parameters method or the "nite element
method (FEM); which is simple, hence neglected here. Now, we pay more attention to the
modelling of the subsystem of gear coupling half, which includes a hub, a sleeve, and two
sections j and j#1.

3.1. THE KINETIC ENERGY OF THE SUBSYSTEM

Let e, d denote the angles of a disc around axes m and g respectively. Hence, in the rotating
co-ordinate system shown in Figure 2(b), the kinetic energy of the hub or sleeve can be
written as
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The kinetic energy ¹ of the subsystem is given by
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where the subscripts je and ji denote the hub and sleeve of the gear coupling at station j.

3.2. THE POTENTIAL ENERGY OF THE SUBSYSTEM

The potential energy function ; of the subsystem consists of two parts, one part is from
the elastic deformation of the rotor sections beside the coupling, another part from the teeth
Figure 2. Rotor-gear coupling system and Co-ordinate systems.
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deformation of the coupling that was modelled by Marmol [3] with the lateral and angular
sti!ness coe$cients of the coupling.
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3.3. THE DISSIPATION FUNCTION OF THE SUBSYSTEM

In terms of Marmol [3] the energy dissipation of the subsystem is from the internal
damping of the coupling, which is a source of instability vibration. Then Rayleigh
dissipation function RI in the rotating co-ordinate system can be expressed as

RI "
1

2
c
l
[(mQ

ji
!mQ

je
)2#(gR

ji
!gR

je
)2]#

1

2
c
a
[(dQ

ji
!dQ

je
)2#(eR

ji
!eR

je
)2], (22)

where the torsional damping is very small, hence neglected.
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3.4. THE EQUATION OF MOTION

In theoretical analysis, although some condition such as large sti!ness of the teeth is
needed for equation (18), in a real turbo-machinery system it is easily satis"ed. For example,
the sti!ness k

l
is larger than 1010 N/m for gear coupling Type CL5. Thus, substituting

equation (18) into expressions (20) and (21), then employing Lagrange's equation of motion
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ince the equations in the sleeve have the same forms, we ignore then here.
Traditionally, the vibration models of the rotor system with a gear coupling we

onsidered were divided into two uncoupled directions [3, 5, 7}9], or their generalized
o-ordinates (or generalized displacements) are uncoupled both in the lateral and
orsional directions; therefore, their dynamic characteristics are not a!ected by each other.
owever, from equation (24) we can see clearly that the inertia terms and elastic terms
re coupled both in the lateral direction and torsional directions, respectively, and
annot be divided again. Meanwhile the system becomes non-linear at the station of gear
oupling.
Assembling all the equations of motion of the stations, we can obtain the dynamic

quations of the system [Figure 2(a)].
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If some journal bearings existed in the rotors, the linearized sti!ness and damping
coe$cients of oil "lm may be introduced as follows:
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After transforming expression (25) into the rotating co-ordinate system, it becomes
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Therefore equations of motion of the rotor-bearing-gear coupling system can be expressed
as

[M]MfG N#[C]MfQ N#[K]MfN"0, (27)

where the elements of the matrices [M], [C], and [K] are not constant, they are functions of
the generalized co-ordinates.

4. MISALIGNMENT AND NUMERICAL ANALYSIS

Figure 3 shows a simple con"guration of the rotor-bearing-gear coupling system, at
stations 4 and 5 where there are two gear coupling halves; according to equation (18) the
constraint equations of the system are expressed as

r2
b
(h

4i
!h

4e
)2"(m

4i
!m

4e
)2#(g

4i
!g

4e
)2 ,

r2
b
(h

5i
!h

5e
)2"(m

5i
!m

5e
)2#(g

5i
!g

5e
)2 .

(28)

Therefore, there are totally 48 d.o.f. for the system.
Misalignment is unavoidable in the multirotor system. Two major kinds of misalignment

for the gear couplings are the parallel and the angular shown in Figure 4(a) and (b)
respectively.

4.1. PARALLEL MISALIGNMENT

Let a denote the initial parallel misalignment that coincides with the x-axis (the vertical
direction) at station 4, then a translation is needed in the "xed co-ordinate system:

x
4i
"x

4I
#a,

y
4i
"y

4I
.

(29)
Figure 3. Rotor-bearing-gear coupling system.



Figure 4. Misalignment of gear coupling: (a) parallel misalignment; (b) angular misalignment.
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The two co-ordinate systems transformation between the rotating and the "xed [see Figure
2(b)] is written as

G
m

gH4j"C
cos Xt sinXt

!sinXt cosXtD G
x

yH4j , j"i, I. (30)

Then

G
m

gH4i"G
m

gH4I#G
a cosXt

!a sinXtH . (31)

4.2. ANGULAR MISALIGNMENT

Let / denote the initial angular misalignment that rotated around the y-axis (the
horizontal direction) at station 4, then in the "xed co-ordinate system the translation is

u
4i
"u

4I
#/,

t
4i
"t

4I
.

(32)

Between the two co-ordinate systems shown in Figure 2(b), the transformation becomes

G
d

eH4j"C
cosXt sinXt

!sinXt cosXtD G
u

tH4j , j"i, I. (33)

Expression (33) may then be written as

G
d

eH4i"G
d

eH4I#G
u cosXt

!/ sin XtH . (34)

For the right half (at station 5) the procedure is same.
Substituting equations (31), (34), into equation (27), it reads as

[M]MfG N#[C]MfQ N#[K]MfN"MFN, (35)



294 M. LI AND L. YU
where the right-hand side matrix MFN"M2 FT
4e

FT
4i

FT
5i

FT
5e

2NT, in which

MF
4e

N"

i
g
g
g
j
g
g
g
k

!

Jz
i

r2
b

aX2 cos(Xt#b
a
) cosb

a
!c

l
aX sinXt

!

Jz
i

r2
b

aX2 cos(Xt#b
a
) sinb

a
!c

l
aX cosXt

!c
a
/X sinXt

!c
a
/X cosXt

Jz
i

r
b

aX2 cos(Xt#b
a
)

e
g
g
g
f
g
g
g
h

, (36)

MF
4t
N"

i
g
g
g
j
g
g
g
k

Jz
i

r2
b

aX2 cos(Xt#b
a
) cosb

a
#c

l
aX sinXt

Jz
i

r2
b

aX2 cos(Xt#b
a
) sinb

a
#c

l
aX cosXt

c
a
/X sinXt

c
a
/X cosXt

0

e
g
g
g
f
g
g
g
h

, (37)

and

b
a
"tan~1

g
4l
!g

4e
!a sin Xt

m
4l
!m

4e
#a cos Xt

.

The matrices MF
5i
N, MF

5e
N are of the same form as MF

4i
N, MF

4e
N.

Equation (35) is the motion equation of the coupled lateral torsional vibration of the
system with misaligned gear coupling, and is a set of non-linear di!erential equations which
are periodic functions of time in the rotating co-ordinate system. In expressions (36) and
(37), we can "nd that the forces due to the misalignment consist of two parts, one related to
JZ
i
aX2/r2

b
is clearly from the inertia force of the sleeve of a gear coupling, and the other

related to c
l
aX is from the damping of the gear coupling; hence the amplitudes of the steady

state vibration of the misaligned system are related to the misalignment, internal damping,
the rotating speed, and the structural parameters of the gear coupling.

The inertia force of the sleeve due to misalignment is equal to JZ
i
aX2/r2

b
that coincides

with the x-axis. Based on Newton's laws it reacted on the teeth of the hub along the
engagement line, and equals F@

gi
"JZ

i
aX2 cos(Xt#b

a
)/r2

b
shown in Figure 5. The force

F@
gi

can be equivalently replaced by a force and a moment. The former F
gi

acts on the center
O

e
of the hub, and the later M

gi
acts on the hub in the torsional direction. Furthermore, the

components of F
gi

in x and y directions are

F
gx
"!Jz

i
aX2 cos2 (Xt#b

a
)/r2

b
"!Jz

i
aX2[cos(2Xt#2b

a
)#1]/2r2

b
, (38)

F
gy
"!Jz

i
aX2 cos2 (Xt#b

a
) sin(Xt#b

a
)/r2

b
"!Jz

i
aX2 sin(2Xt#2b

a
)/2r2

b
(39)



Figure 5. The inertia force and moment acted on the hub.
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and the moment is

M
gi
"Jz

j
aX2 cos (Xt#b

a
)/r

b
. (40)

From equations (38)}(40), we can "nd by supposing b
a
equal to constant, that equation

(35) is linear, and the force components in x and y directions in its right terms become
periodic functions of time in two integer multiple rotating speed. Then based on the theory
of linear vibration the response in lateral (x and y) direction is of two integer multiple
components of the rotating speed, and from equation (40) for the same reason the response
in the torsional direction has the component of the rotating speed. In general b

a
is not

a constant, and is a function of time and the generalized co-ordinates. Thus, equation (35) is
non-linear. Its dynamic analysis in theory is di$cult for the system, therefore, numerical
analysis is required.

Using the same method we can investigate the force from c
l
aX. The integer multiple

components will also occur in the response.
In the past works, the response or vibration signature of the rotor -bearing system with

a misaligned gear coupling in the lateral direction was considered more, and that in the
torsional direction was ignored. In the above modelling and analysis we know that the
responses in the two directions are related to each other because of the coupled vibration.
This dynamic behavior is very important in the fault diagnosis analysis of the misaligned
system.

4.3. RESULTS OF NUMERICAL INTEGRATION

To study the signature of the rotor-bearing-gear coupling system show in Figure 3, an
analysis using numerical integration has been performed for two uniform symmetrical
rotors supported at the ends in journal bearings connected by a gear coupling Type CL5.

Consider the values of the system: rotors l
1
"0)5 m, l

2
"0)15 m, d"0)09 m,

X"314)16 rad/s, E"206 GPa, G"80 GPa, m"700 kg, Jz"12)0 kg m2, Jd"6)0 kgm2;
bearings (at stations 1 and 8) k

xx
"1)274]108 N/m, k

xy
"!0)215]108 N/m,

k
yx
"1)520]108 N/m, k

yy
"0)812]108 N/m, c

xx
"7)906]105 Ns/m, c

xy
"2)633]

105 Ns/m, c
yx
"2)633]105 Ns/m, c

yy
"3)143]105 N s/m, bearings (at stations 3 and 6)

k
xx
"1)477]108 N/m, k

xy
"!0)197]108 N/m, k

yx
"1)683]108 N/m, k

yy
"0)882]

108 N/m, c
xx
"8)698]105 Ns/m, c

xy
"2)865]105 Ns/m, c

yx
"2)865]105 Ns/m,
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c
yy
"3)268]105 Ns/m; gear coupling, k

l
"1)8]1010 N/m, k

a
"0)0 N/m, k

t
"8)04]

106 Nm/rad, c
l
"1)10]106 Ns/m, c

a
"86)2 Nms/rad, r

b
"0)0798 m2, a"203, l

3
"0)15 m,

a"0)20]10~3m, /"0)44]10~2 rad.
Figure 6 shows the steady state response diagrams and their frequency spectra at running

speed, it may be seen that the even-integer multiples of the rotating speed of lateral
vibration and the odd-integer multiples of the torsional vibration occurred in the
Figure 6. Steady state responses of the system and their frequency spectrums at running speed.



Figure 6. Continued.
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misaligned system, and the integer multiples of vibration are apparent around the gear
coupling. The vibrations of rotors far away from the coupling are not visible. Therefore,
those would provide more detailed information for the fault diagnosis of the gear coupling
misalignment in the multirotor system. After calculating, it is found that the responses
increase with an increase in the misalignment as well as the damping coe$cients of gear
couplings.



Figure 6. Continued.
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Traditionally, the damping (or internal friction) of gear coupling was considered because
it can cause instability to the system. From the above analysis, we can "nd that the damping
not only a!ects the stability of the system, but also causes the vibration of integer multiples
components. In general, the damping of the system is mainly from the journal bearings (oil
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"lm force), that from the gear coupling is not large, hence it decreases the stability threshold
speed little. But the damping from gear couplings can cause the integer multiples vibration
both in the lateral and torsional directions, which may create the harmonic resonance of the
system and could cause the damage to the system.

5. CONCLUSIONS

Based on the engagement conditions of gear couplings, the holonomic constraint
equation describing an inherent relationship between the lateral displacements in the
centers and torsional angles of the mating gears is derived, which implies a coupling of the
lateral and torsional d.o.f. and is the primary source due to the coupled vibrations between
lateral and torsional directions in multirotor systems with a gear coupling. Thereby the
vibrations in the two directions cannot be considered independently.

The non-linear coupled lateral torsional vibration model of a multirotor system with
a gear coupling is developed from Lagrange's equation. Theoretical analysis shows that the
forces and moments acting on gear couplings due to the initial misalignment are from the
inertia forces of the sleeve and the internal damping between the meshing teeth. The
amplitudes of the steady state vibration of the system are related to the misalignment,
internal damping, the rotating speed, and the structural parameters of the gear coupling.

Numerical analysis for the signature of vibration reveals that the even-integer multiples
of the rotating speed of lateral vibration and the odd-integer multiples of the torsional
vibration occurred in the misaligned system, and the integer multiples of vibration are
apparent around the gear coupling. The vibrations of rotors far away from the coupling are
not visible.
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APPENDIX A: NOMENCLATURE

a parallel misalignment at station 4
c
l
, c

a
lateral and angular damping coe$cients of gear coupling respectively

c
xx

, c
xy

, c
yx

, c
yy

damping coe$cients of oil bearing "lm
d diameter of rotor
E Young's modulus
F force
G shear modulus
I moment of inertia of section
Jd, Jz diameter and polar moment respectively
k
l
, k

a
lateral and angular sti!ness coe$cients of gear coupling respectively

k
t

torsional sti!ness coe$cients of gear coupling
k
xx

, k
xy

, k
yx

, k
yy

sti!ness coe$cients of oil bearing "lm
l length
m mass
M moment
r
b

radius of base circle of gear coupling
RI dissipation function
t time
¹ kinetic energy
; potential energy
x, y displacements of vertical and horizontal directions respectively
X, > amplitudes of frequency spectrum of x and y respectively
X rotor speed
a pressure angle of gear
b angular
/ angular misalignment at station 4
h, H torsional angle and its amplitude of frequency spectrum respectively
[M], [C], [K], [F] matrices de"ned by equations (19) and (27)

Subscripts
a, l, t angular, lateral and torsional directions
e, i hub and sleeve of gear coupling
i, j ith and jth shaft section (or node)
x, y x and y components in lateral direction

Superscripts
d, z diameter and z (or polar) direction
) , )) derivative with time
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